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Figure 1. Up-Left: Existing methods such as GoodDrag [39] require mask and prompt to assist the editing. Our DirectDrag removes the
dependency on mask and prompt, enabling more flexible editing while maintaining precise control. Bottom-left: Comparison with other
manual mask-free methods, our method achieves more faithful and robust editing effects. Right: Additional qualitative results by DirectDrag.

Project Page: https://frakw.github.io/DirectDrag/.

Abstract

Drag-based image editing using generative models
provides intuitive control over image structures. However,
existing methods rely heavily on manually provided masks
and textual prompts to preserve semantic fidelity and motion
precision. Removing these constraints creates a fundamental
trade-off: visual artifacts without masks and poor spatial
control without prompts. To address these limitations, we
propose DirectDrag, a novel mask- and prompt-free editing
framework. DirectDrag enables precise and efficient manipu-
lation with minimal user input while maintaining high image
fidelity and accurate point alignment. DirectDrag introduces
two key innovations. First, we design an Auto Soft Mask
Generation module that intelligently infers editable regions

from point displacement, automatically localizing defor-
mation along movement paths while preserving contextual
integrity through the generative model’s inherent capacity.
Second, we develop a Readout-Guided Feature Alignment
mechanism that leverages intermediate diffusion activations
to maintain structural consistency during point-based edits,
substantially improving visual fidelity. Despite operating
without manual mask or prompt, DirectDrag achieves supe-
rior image quality compared to existing methods while
maintaining competitive drag accuracy. Extensive exper-
iments on DragBench and real-world scenarios demonstrate
the effectiveness and practicality of DirectDrag for high-
quality, interactive image manipulation. Code is available
at: https://github.com/frakw/DirectDrag.
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Figure 2. Workflow Comparison. Left: Traditional methods (e.g., DragDiffusion [30], GoodDrag [39]) rely on masks and prompts,
increasing user burden. Our method simplifies the process by requiring only point inputs. Right: Removing masks leads to distortion, while
omitting prompts reduces accuracy. We demonstrate these effects on GoodDrag [39] and also show the case without both inputs.

1. Introduction

Drag-based image editing has become a powerful and
intuitive way to manipulate visual content. With recent
advances in diffusion-based generative models [6, 26],
this type of interaction has become increasingly precise
and accessible. Unlike traditional text-to-image (T2I)
methods [19, 24, 28], which rely on language to describe
visual intentions, drag-based approaches provide direct and
fine-grained control by allowing users to move a point from a
source location to a desired target [18, 21, 30]. This enables
a wide range of image modifications, including facial expres-
sion editing, object repositioning, content resizing, restora-
tion, and data augmentation. Many existing methods still
require users to provide additional information, such as an
editable region mask and a text prompt, to ensure accurate
and semantically coherent results [11, 12, 20, 34]. These
extra inputs, while helpful in guiding the editing process,
create two major sources of annotation overhead and insta-
bility. First, manually drawing an appropriate mask becomes
particularly difficult when users want to edit multiple parts
of an image at once. In such cases, designing a precise mask
is not only time-consuming but also prone to errors. Poorly
drawn masks often result in unexpected distortions or arti-
facts. Second, cues are often difficult to formulate accurately,
especially when images contain multiple semantically rich
regions. Describing a complex visual environment in one
sentence is extremely challenging, and even slight errors in
the cues may mislead the diffusion model and lead to poor
results. In some scenarios—such as medical imaging or tech-
nical illustrations—there may not even be suitable natural
language to express the intended change, making prompt-

based control impossible. We find that removing the mask
leads to noticeable loss of image fidelity (IF), while omitting
the prompt significantly reduces point movement accuracy,
reflected by increased mean distance (MD) scores. There-
fore, eliminating these inputs, while desirable for simplifying
user interaction, introduces real technical challenges. We
illustrate these effects in Figure 2, where removing either
the mask or the prompt leads to degraded visual quality or
inaccurate drag results on a representative baseline (Good-

Drag [39]). To address these issues, we present DirectDrag,

a novel drag-based editing framework that operates in a

manual mask-free and prompt-free setting. Our method

maintains high visual quality and competitive spatial preci-
sion, all while requiring only minimal and intuitive input:
handle and target points.

To achieve this, DirectDrag integrates three core technical
components:

* An Auto Soft Mask Generation module that automati-
cally infers editable regions based on point displacement.
Rather than asking users to paint a mask manually, we
localize deformation only along the path of movement,
enhancing control where it matters most while relying
on the generative model’s capacity to preserve context
elsewhere.

* A lightweight Readout-Guided Feature Alignment
module that extracts intermediate diffusion features and
aligns them based on spatial correspondence. This mech-
anism replaces the semantic guidance usually provided
by prompt, helping the model maintain visual consistency
and structure during editing.

* A Latent Warpage Function, adapted from prior work,
which improves convergence and drag precision by initial-



izing latent codes with a geometry-aware deformation.
This component offers a prompt-free alternative to guide
the optimization process toward semantically plausible
outcomes.
Together, these components allow DirectDrag to simplify the
editing pipeline significantly. By removing the need for mask
and prompt, we reduce the annotation burden and the risk
of unstable or incorrect edits. As illustrated in Figure 1, our
method outperforms existing manual mask-free approaches
by producing more faithful and robust edits, even with
minimal inputs. Despite having fewer user-provided signals,
our approach achieves higher image fidelity than strong
baseline. Although there is a slight trade-off in drag accu-
racy compared to full-input systems, the difference remains
small. This suggests that our framework provides a favorable
balance between usability and performance. We validate the
effectiveness of DirectDrag through extensive experiments
on DragBench and real-world images, confirming its poten-
tial for practical and scalable interactive editing.

2. Related Work
2.1. Generative Image Models and Image Editing

Generative image models, particularly GANs and diffu-
sion models, have significantly enhanced image synthesis
and editing capabilities. GANs [5, 9] provide fast gener-
ation, but stable reversible editing is often difficult to
achieve. Diffusion models [6, 26, 28] show outstanding
fidelity through iterative denoising of latent codes. These
models form the basis of interactive image editing appli-
cations. Image editing techniques can be divided into
content-aware and content-free methods: Content-Aware
Editing includes object manipulation, spatial transforma-
tion, inpainting, and style transfer. Text-prompted editing
methods (e.g., InstructPix2Pix [1, 28]) and user-guided
approaches fall into this category. Content-Free Editing
focuses on customization using user-specified images or
attributes. Examples include subject-driven personalization
(e.g., DreamBooth [27]) and attribute-driven fine-tuning.

2.2. Drag-based Image Editing

Drag-based image editing methods enable users to control
image structures by dragging specific points to target loca-
tions. DragGAN [21] first proposed a latent code optimiza-
tion framework with point tracking based on GANSs, but
struggled with generalizing to real-world inputs. DragDiffu-
sion [30] and DragonDiffusion [18] extended this paradigm
to diffusion models, improving structural manipulation and
semantic controllability through prompt conditioning and
denoising-based alignment.

Subsequent methods aimed at improving editing quality
and robustness. DragNoise [13] reduces cost by opti-
mizing U-Net bottleneck features. GoodDrag [39] alter-

nates dragging and denoising to prevent error accumulation.
GDrag [11] is training-free, addressing intention and content
ambiguity via atomic manipulations and dense trajectories.
FlowDrag [10] improves geometric consistency with 3D
mesh-guided flow fields. Dragl.oRA [35] enhances preci-
sion and efficiency through online LoRA adaptation with
adaptive motion supervision.

Other works focus on enhancing editing efficiency.
DiffEditor [17] reduces optimization time by decreasing
the number of diffusion steps. FastDrag [40] uses a one-step
feed-forward generation approach for instant edits. Light-
ningDrag [29] treats editing as conditional generation trained
on large-scale video data for fast, accurate results. EEdit [36]
accelerates editing by reducing spatial and temporal redun-
dancy through region caching and inversion step skipping.

2.3. Manual Mask-Free Drag-Based Image Editing

Recent works have proposed removing manually
provided masks to simplify the drag editing pipeline while
preserving semantic and structural control. EasyDrag[7]
focuses on user-friendliness by eliminating the need for
masks and tuning procedures such as LoRA[8]. It lever-
ages pretrained diffusion models without architectural modi-
fications and achieves better editing precision and visual
quality than DragDiffusion [30]. However, it still requires
a text prompt to maintain semantic guidance, which limits
usability in prompt-free scenarios. In addition, EasyDrag
relies on ControlNet [37], which introduces considerable
memory overhead during inference.

InstantDrag [31] improves editing speed by introducing
an optimization-free pipeline that takes only an image and a
drag instruction as input. It uses a drag-conditioned optical
flow network followed by a flow-guided diffusion model to
achieve fast and realistic edits. While it avoids mask and
prompt, InstantDrag must retrain a dedicated diffusion model
on large-scale video data, significantly increasing param-
eter count and training cost. Moreover, it often requires
multiple drag instructions to produce stable results, reducing
its effectiveness in sparse user-interaction settings. Adap-
tiveDrag [2] introduces automatic mask generation using
superpixel segmentation by SAM?2 [25] and incorporates
semantic-aware latent optimization guided by adaptive steps
and a specialized loss. Although it improves localization
accuracy and generalization across categories, AdaptiveDrag
depends on external segmentation models and still requires
textual prompt for semantic alignment, resulting in addi-
tional computational overhead.

While these methods effectively reduce the need for
manual mask input, they either rely on prompt, introduce
heavy architectural modifications, or require extra modules
such as segmentation or flow estimation. In contrast,
DirectDrag adopts a lightweight and manual mask-free and
prompt-free framework that maintains high image fidelity
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Figure 3. Overview of the proposed DirectDrag framework. Given an input image and point pairs, we apply DDIM inversion to obtain
latent codes, initialize editing via latent warpage function and generate soft mask, then iteratively apply drag and denoising guided by motion

supervision and feature alignment.

and competitive drag precision. It achieves this through auto-
matic soft mask generation, readout-guided feature align-
ment, and latent warpge function introducing only a minimal
auxiliary module, far more efficient and compact than the
large-scale components used in existing approaches.

3. Method
3.1. Overview

We propose DirectDrag, a manual mask-free and prompt-
free framework for drag-based image editing. Unlike
previous diffusion-based methods [4, 18, 30, 39], which
rely on hand-crafted mask or prompt, our method simpli-
fies the pipeline while preserving editing quality. As shown
in Figure 3, the process begins by applying DDIM inver-
sion [32] to encode the input image into latent space.
A geometry-aware latent warpage function (LWF) initial-
izes the latent code, and an auto soft mask generation
module estimates the editable region based on point displace-
ment—removing the need for manual masks. We adopt
the AIDD strategy [39] (Alternating-Drag-and-Denoising)
to optimize the latent representation iteratively. During
each step, drag loss encourages point movement, while our
readout-guided Feature alignment module extracts interme-
diate diffusion features to maintain visual consistency. These
components work together to preserve fidelity and precision
even without prompts or segmentation inputs.

Compared to prior work that introduces architectural
changes [31] or external segmentation tools [2], DirectDrag

remains lightweight and modular, while achieving strong
fidelity and alignment performance across diverse examples.

3.2. Latent Diffusion and DDIM Inversion

Denoising Diffusion Probabilistic Models (DDPMs) [6]
have demonstrated strong generative capabilities by
modeling the image generation process as a gradual
denoising of random noise. However, operating directly
in pixel space is computationally expensive. To improve
efficiency, Latent Diffusion Models (LDMs) [26] encode
the image x( into a lower-dimensional latent representa-
tion zg = £(x) using a pretrained VAE encoder €. The
diffusion process is then carried out in the latent space as a
Markov chain over 7' timesteps, where the marginal likeli-
hood is expressed as:

po(2zo0) = /pe(leT) dzy.r, (1)
where each latent variable z, is obtained by progressively
adding Gaussian noise to zg using a forward process defined
as:

Zt:\/aZO'F \/1_th7 ENN(O7I)7 (2)

where &; denotes the cumulative product of noise schedule
coefficients up to timestep t.

To enable editing from real images, we adopt determin-
istic DDIM inversion [32], which reverses the diffusion
process to recover latent trajectories. This allows us to
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Figure 4. Effect of our Soft Mask. Left: Compared to no masking and user provide hard mask, applying the generated soft mask significantly
improves visual fidelity and structure preservation, as reflected by higher image fidelity scores (1-LPIPST). Right: Visualization of soft
masks under different drag configurations and Gaussian widths (o), illustrating their adaptiveness to motion magnitude and direction.

initialize the editing process from a clean latent code z
without requiring random sampling. Since our method does
not rely on prompts, DDIM inversion is performed in a
prompt-free setting, enabling faithful reconstructions and
providing a robust starting point for subsequent drag-based
manipulation.

3.3. Drag-based Image Editing

Our method builds upon prior drag-based diffusion

editing approaches [30, 39], where user-specified handle
points are iteratively moved toward target locations by opti-
mizing latent features in the diffusion model. To guide
this deformation process, we incorporate three key compo-
nents: motion supervision, alternating drag and denoising,
and feature-based point tracking.
Motion Supervision. We adopt a multi-step motion super-
vision loss to encourage the features at displaced handle
points to match those at their original locations. This super-
vision helps align internal features with the intended motion
trajectory:

- ZZ H]:q+d

where F, denotes the U-Net features extracted at location g,
and d; is the displacement vector of the ¢-th handle point.

AIDD Optimization Schedule. To prevent noise accumu-
lation and preserve global image structure, we adopt the
AIDD schedule proposed in GoodDrag [39]. Rather than

¢*) —sg(Fy(zr,e")|l,. 3

performing continuous updates in the latent space, AIDD
interleaves B drag steps with periodic denoising steps. This
scheduling helps retain proximity to the image manifold
and stabilizes optimization. At each drag step, we apply a
patch-level alignment loss:

‘Cdrag = Z H‘FQ(Pi"F(;p@) - Sg(‘}—ﬂ(pi))”l ’ 4)

where (-, 71) extracts a spatial patch of radius 1, and 6p?
is the displacement from the initial handle position to its
target.

Point Tracking. We also incorporate the point tracking
mechanism from GoodDrag [39] to maintain semantic
consistency throughout the editing trajectory. Instead of
keeping handle points fixed across iterations, we dynam-
ically update each point’s position by matching its initial
diffusion features with features from nearby locations in
the current timestep. This allows the model to follow the
semantic content even as the image structure evolves during
optimization. The detailed formulation of this tracking algo-
rithm is provided in the supplementary material.

Together, motion supervision, AIDD scheduling, and
feature-based tracking form the core optimization loop that
enables precise point-based editing while preserving image
quality and structural coherence.

3.4. Auto Soft Mask Generation

In drag-based editing, prior methods often rely on user-
provided hard mask to confine deformation. However, even
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improves structural consistency during dragging.

with these mask, diffusion models tend to produce unin-
tended changes in unrelated regions due to weak spatial
constraints. In practice, omitting mask altogether leads to
even more severe artifacts, such as missing objects, hallu-
cinated structures, or drastic changes in color and composi-
tion—as shown in Fig. 4.

To improve usability while reducing over-editing, we
propose to generate a soft spatial mask M € [0, 1]#*W
directly from the drag instructions. This removes the
burden of manual annotations and ensures localized struc-
tural control. Specifically, for each handle—target pair
(h;, t;) with coordinates (zo, yo) and (z1, y1), we interpo-
late N = max(|z1 — xol,|y1 — vo|) + 1 points along the
linear path connecting them:

M(xg,yx) =1, where
(xka yk) = |_(1 - ak)(-TOvyO) + ak(l‘l)ylﬂ 3 (5)
k k
o = (6)

N -1  max(|z1 — xol, |[y1 — vol|)’

We accumulate M from all point pairs, then apply a
Gaussian filter followed by normalization to form the final
soft mask M:

GaussianBlur(M , o)

M = - .
max (GaussianBlur(M , a))

N

The resulting soft mask softly highlights the regions
along dragging trajectories, enforcing smooth, localized
constraints without introducing sharp editing boundaries.

While this design significantly reduces unintended edits, it
has its limitations: the linear interpolation path may not fully
cover the deformable object, especially for complex geome-
tries. Nevertheless, we argue that the primary role of a mask
is to localize major structural changes—not to precisely
capture every affected pixel. In fact, over-constraining the
optimization via strict loss masking can conflict with the
global nature of latent updates in diffusion models, some-
times degrading drag precision instead of improving it. Our
lightweight mask acts as a guiding prior, with finer control
delegated to subsequent alignment mechanisms.

3.5. Readout-Guided Feature Alignment

Although the soft mask improves visual fidelity and local
stability, it often fails to suppress subtle background artifacts
or hallucinated textures, as illustrated in Fig. 5. To address
this, we incorporate a feature alignment mechanism based on
Diffusion Hyperfeatures [15] and Readout Guidance [14].
Readout Network. Following Luo et al. [14], we use a
lightweight readout network trained to extract appearance-
preserving features from intermediate U-Net layers of a
frozen denoiser. Supervision is provided via a triplet loss:

‘Ctriplet = max (07 D(F(Ia), F(Ip))
- D(F(Ia)v F(In)) + 6)

where F'(-) is the readout head output, D is cosine distance,
and I, I,, are positive and negative samples. Negative exam-
ples are generated by SDEdit [16], which perturbs appear-
ance while preserving structure. Readout Guidance [14] use
training data from the DAVIS dataset [22].

®)



Method Venue Mask Prompt | IFt CLIPSIM{ wmpj | Medel  Tuning
Params Params
DragDiffusion [30] CVPR’24 v v 0.883 0.977 3287 | 865M  0.07M
FreeDrag [12] CVPR’24 v v 0.897 0.977 3382 | 865M  0.07M
DiffEditor [17] CVPR’24 v v 0.877 0.966 31.70 | 865M  0.07M
DragNoise [13] CVPR’24 v v 0.899 0.972 3792 | 865M  0.33M
FastDrag [40] NeurIPS’24 v v 0.859 0.963 32.66 | 865M 0
GoodDrag [39] ICLR’25 v v 0.869 0.977 2528 | 865M  0.07M
DragText [3] WACV’25 v v 0.870 0.971 3425 | 865M  0.12M
LightningDrag [29] ICML’25 v v 0.881 0.970 29.95 | 933M 933M
Manual Mask-free methods
EasyDrag* [7] CVPR’24 X v 0.882 - 3444 | 1770M  0.07M
Readout Guidance [14] CVPR’24 X X 0.867 0.951 5512 | 871IM  5.97M
AdaptiveDrag [2] ArXiv’'24 X v 0.867 0.975 3394 | 1168M  0.07M
InstantDrag [31] SIGGRAPH Asia’24 X X 0.878 0.968 3041 | 914M 914M
DirectDrag (ours),,, | wr - X v 0.918 0.982 3191 | 871IM  5.97M
DirectDrag (ours) - X X 0.891 0.976 29.65 | 871IM  5.97M

Table 1. Quantitative evaluation on the DragBench [30] dataset. IF = 1 - LPIPS. CLIP SIM = CLIP [23] Similarity. MD = Mean
Distance. v': Required, X: Not Required. LWF: Latent Warpage Function. Model Params: Total parameters used in model. Tunning Params:
Parameters require to training in correspond method. * means scores are taken from the another publication.

Method y=1 ~=5 y=10 =20 | GScoret
DragDiffusion [30]  0.1189  0.1101  0.0979  0.0924 6.90
SDE-Drag [20] 0.1571 0.1437 0.1291 0.1143 5.38
GoodDrag [39] 0.0696 0.0673  0.0642  0.0623 7.94
DirectDrag (ours) 0.1124 0.1044 0.0978  0.0916 6.95

Table 2. Quantitative evaluation of drag accuracy in terms of DAI
and GScore on Drag100. Lower values indicate more accurate drag
editing. Other scores are taken from GoodDrag [39].

Inference-Time Guidance. During editing, we extract inter-
mediate features from the original image z! (before any
dragging) and use them as the reference for appearance
alignment. For each optimization step, the current latent
Z; is passed through the readout network, and the following
loss is applied:

Ly = ||F(z§) — F(2))lI3, 9)

where F'(-) denotes the readout network’s output from
selected U-Net layers (e.g., down3 to up2). This encourages
the edited latent to stay visually close to the original appear-
ance, mitigating hallucination and identity drift. Unlike
Readout Guidance [14], which is designed for one-shot
diffusion and prone to hallucinations, our approach inte-
grates readout features into a multi-step optimization frame-
work. This allows better convergence and reduces artifacts,
especially in challenging scenes. The guidance is effective
without modifying the diffusion backbone, introducing only
minor overhead while improving appearance stability.

3.6. Latent Warpage Function

To initialize the latent with geometry-aware deforma-
tion, we adopt the latent warpage function (LWF) from Fast-

Drag [40]. For each masked pixel p; in latent space, its
displacement v; is computed as a weighted combination of
drag vectors d; = e; — s;:

k
vi=>Y wh-\-d;, (10)
i=1

where w’ is the inverse distance weight to handle s;, and A’
is a stretch factor based on geometric intersections.

Unlike the original latent warpage function, which often
over-applies displacement and harms fidelity, we scale the
drag vector with a ratio p:

(1)

producing a gentler shift in latent space. This mitigates early
semantic drift and improves convergence. Empirically, this
initialization reduces mean distance error and enables more
stable drag optimization in subsequent steps.

di =p-(e; —si),

4. Experiments
4.1. Implementation Details

We build on Stable Diffusion v1.5 [26] and run all experi-
ments on single NVIDIA RTX 4090. Our pipeline follows
DDIM inversion with 50 inference steps and guidance scale
1.0. We highlight three key settings: (1) Soft Mask: Gaussian
blur with 0 = 30. (2) Readout-Guided Weight: The readout
guidance loss is scaled by 350 before adding to the main
objective. (3) Latent Warpage Function: To reduce over-
drag during initialization, we apply 15% of the displacement
vector from handle to target. All other parameters follow



Drag Instruction GoodDrag

AdaptiveDrag

InstantDrag DirectDrag (ours)

TN AL
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settings from baseline (GoodDrag [39]). For an input image
of 512 x 512 with a single drag instruction, it takes approxi-
mately 20 seconds to train LoRA and around 50 seconds for
editing inference, utilizing about 13 GB of VRAM.

4.2. Quantitative Evaluation

We evaluate on DragBench [30] using (1) 1-LPIPS [38]
for perceptual similarity, (2) CLIP [23] Similarity for
semantic consistency, and (3) MD [21] for dragging accu-
racy using DIFT [33]. As shown in Table 1, Direct-
Drag perfrom state-of-the-art result in manual mask-free
methods. Despite working in minimal input conditions,
DirectDrag matches or exceeds mask-based and prompt-
based methods in image fidelity and drag accuracy. We also
test our method on Dragl00 dataset by DAI and GScore
metrics, see Table 2.

4.3. Qualitative Results

Fig. 6 compares DirectDrag to GoodDrag [39] (base-
line with mask and prompt) and two manual mask-free
methods, AdaptiveDrag [2] and InstantDrag [31]. While
the latter often suffers from distortions or incomplete
motion, our method achieves more accurate and stable edits.
Across diverse cases—motion, face, and object deforma-
tion—DirectDrag maintains background consistency and
visual detail, confirming its advantage in prompt-free and
manual mask-free editing.

4.4. Ablation Study

Table 3 shows the impact of each component in Direct-
Drag. The soft mask significantly improves visual fidelity,

Method SM RG LWF | IFt CSII“]{}; 1+ MDJ
Baseline | 0.789 0963 2474
+ Soft Mask v 0.895 0979 3135
+ Readout Guided v v 0918 0.982 33.75
+ Readout Guided +prompt =~ v/ v 0918 0.982 31.91
+ Latent Warpage v v v 0.891 0976  29.65
+ Latent Warpage prompt v v v 0.891 0.975 29.18

Table 3. Ablation study of DirectDrag. Baseline indicates Good-
Drag [39] without mask and prompt.

while readout guidance helps preserve appearance but
slightly reduces motion accuracy. Latent warpage func-
tion improves spatial precision with minimal degradation in
image quality. We also tested a variant using prompt condi-
tioning, showing that our latent warpage function can effec-
tively replace prompt for improving drag accuracy. Overall,
our final setup offers the best trade-off between fidelity and
accuracy in a manual mask-free and prompt-free setting.

5. Conclusion

We presented DirectDrag, a lightweight framework for
drag-based image editing that operates without manual mask
or prompt. By integrating automatic soft mask generation,
readout-guided feature alignment, and a latent warpage func-
tion, our method achieves high visual fidelity and competi-
tive dragging accuracy. Extensive experiments demonstrate
that DirectDrag provides a practical and effective solution
for intuitive image manipulation, balancing usability, preci-
sion, and quality.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

Tim Brooks, Aleksander Holynski, and Alexei A Efros.
Instructpix2pix: Learning to follow image editing instructions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 18392-18402,
2023. 3

Yining Chen, Qi Wang, Hao Zhu, Hongxu Lin, and Yibing
Xu. Adaptivedrag: Mask-free point-based image editing with
editable region localization. arXiv preprint arXiv:2410.12696,
2024. 3,4,7,8

Gayoon Choi, Taejin Jeong, Sujung Hong, and Seong Jae
Hwang. Dragtext: Rethinking text embedding in point-based
image editing. In 2025 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pages 441-450.
IEEE, 2025. 7

Yutao Cui, Xiaotong Zhao, Guozhen Zhang, Shengming Cao,
Kai Ma, and Limin Wang. Stabledrag: Stable dragging
for point-based image editing. In European Conference on
Computer Vision (ECCV), pages 340-356. Springer, 2024. 4
Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
Neural Information Processing Systems (NeurlPS), 27, 2014.
3

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems (NeurIPS), 33:6840-6851, 2020. 2, 3, 4
Xingzhong Hou, Boxiao Liu, Yi Zhang, Jihao Liu, Yu Liu,
and Haihang You. Easydrag: Efficient point-based manipula-
tion on diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8404-8413,2024. 3,7

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models. In Interna-
tional Conference on Learning Representations (ICLR), 2022.
3

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8110-8119, 2020. 3
Gwanhyeong Koo, Sunjae Yoon, Younghwan Lee, Ji Woo
Hong, and Chang D Yoo. Flowdrag: 3d-aware drag-based
image editing with mesh-guided deformation vector flow
fields. In International Conference on Machine Learning
(ICML), 2025. 3

Xiaojian Lin, Hanhui Li, Yuhao Cheng, Yigiang Yan, and
Xiaodan Liang. Gdrag: Towards general-purpose interactive
editing with anti-ambiguity point diffusion. In The Thir-
teenth International Conference on Learning Representations
(ICLR),2025. 2,3

Pengyang Ling, Lin Chen, Pan Zhang, Huaian Chen, Yi Jin,
and Jinjin Zheng. Freedrag: Feature dragging for reliable
point-based image editing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6860-6870, 2024. 2, 7

Haofeng Liu, Chenshu Xu, Yifei Yang, Lihua Zeng, and

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

Shengfeng He. Drag your noise: Interactive point-based
editing via diffusion semantic propagation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6743-6752, 2024. 3,7

Grace Luo, Trevor Darrell, Oliver Wang, Dan B Goldman, and
Aleksander Holynski. Readout guidance: Learning control
from diffusion features. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8217-8227,2024. 6, 7

Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander
Holynski, and Trevor Darrell. Diffusion hyperfeatures:
Searching through time and space for semantic correspon-
dence. Advances in Neural Information Processing Systems
(NeurIPS), 36:47500-47510, 2023. 6

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun
Wau, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided image
synthesis and editing with stochastic differential equations.
In International Conference on Learning Representations
(ICLR),2022. 6

Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
Jian Zhang. Diffeditor: Boosting accuracy and flexibility
on diffusion-based image editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8488-8497, 2024. 3,7

Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
Jian Zhang. Dragondiffusion: Enabling drag-style manipu-
lation on diffusion models. In International Conference on
Learning Representations (ICLR), 2024. 2, 3, 4

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. In Interna-
tional Conference on Machine Learning (ICML), 2022. 2
Shen Nie, Hanzhong Allan Guo, Cheng Lu, Yuhao Zhou,
Chenyu Zheng, and Chongxuan Li. The blessing of random-
ness: Sde beats ode in general diffusion-based image editing.
In International Conference on Learning Representations
(ICLR),2024. 2,7

Xingang Pan, Ayush Tewari, Thomas Leimkiihler, Lingjie
Liu, Abhimitra Meka, and Christian Theobalt. Drag your gan:
Interactive point-based manipulation on the generative image
manifold. In ACM SIGGRAPH 2023 Conference Proceedings,
pages 1-11,2023. 2,3, 8

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo
Arbeldez, Alex Sorkine-Hornung, and Luc Van Gool. The
2017 davis challenge on video object segmentation. arXiv
preprint arXiv:1704.00675, 2017. 6

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In International Conference on Machine Learning (ICML),
pages 8748-8763. PmLR, 2021. 7, 8

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125,
1(2):3,2022. 2

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman



[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Rédle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting
Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan
Wu, Ross Girshick, Piotr Dollar, and Christoph Feichtenhofer.
Sam 2: Segment anything in images and videos. In Interna-
tional Conference on Machine Learning (ICML), 2025. 3
Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684-10695, 2022. 2, 3, 4,7
Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
22500-22510, 2023. 3

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems (NeurIPS), 35:36479-36494, 2022. 2, 3
Yujun Shi, Jun Hao Liew, Hanshu Yan, Vincent YF Tan, and
Jiashi Feng. Lightningdrag: Lightning fast and accurate drag-
based image editing emerging from videos. In International
Conference on Machine Learning (ICML), 2025. 3,7

Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu
Yan, Wenqing Zhang, Vincent YF Tan, and Song Bai. Dragdit-
fusion: Harnessing diffusion models for interactive point-
based image editing. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 8839-8849, 2024. 2, 3,4,5,7, 8

Joonghyuk Shin, Daehyeon Choi, and Jaesik Park. Instant-
drag: Improving interactivity in drag-based image editing. In
SIGGRAPH Asia 2024 Conference Papers, pages 1-10, 2024.
3,4,7,8

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. In International Conference on
Learning Representations (ICLR), 2021. 4

Luming Tang, Menglin Jia, Qiangian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence from
image diffusion. Advances in Neural Information Processing
Systems (NeurlPS), 36:1363-1389, 2023. 8

Zixuan Wang, Duo Peng, Feng Chen, Yuwei Yang, and
Yinjie Lei. Training-free dense-aligned diffusion guidance
for modular conditional image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13135-13145, 2025. 2

Siwei Xia, Li Sun, Tiantian Sun, and Qingli Li. Draglora:
Online optimization of lora adapters for drag-based image
editing in diffusion model. In International Conference on
Machine Learning (ICML), 2025. 3

Zexuan Yan, Yue Ma, Chang Zou, Wenteng Chen, Qifeng
Chen, and Linfeng Zhang. Eedit: Rethinking the spatial
and temporal redundancy for efficient image editing. arXiv
preprint arXiv:2503.10270, 2025. 3

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on

(38]

(39]

[40]

Computer Vision (ICCV), pages 3836-3847, 2023. 3
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the
1IEEE conference on computer vision and pattern recogni-
tion (CVPR), pages 586-595, 2018. 8

Zewei Zhang, Huan Liu, Jun Chen, and Xiangyu Xu. Good-
drag: Towards good practices for drag editing with diffusion
models. In International Conference on Learning Represen-
tations (ICLR), 2025. 1,2,3,4,5,7,8

Xuanjia Zhao, Jian Guan, Congyi Fan, Dongli Xu, Youtian
Lin, Haiwei Pan, and Pengming Feng. Fastdrag: Manipu-
late anything in one step. Advances in Neural Information
Processing Systems (NeurlPS), 37:74439-74460, 2024. 3,7



	. Introduction
	. Related Work
	. Generative Image Models and Image Editing
	. Drag-based Image Editing
	. Manual Mask-Free Drag-Based Image Editing

	. Method
	. Overview
	. Latent Diffusion and DDIM Inversion
	. Drag-based Image Editing
	. Auto Soft Mask Generation
	. Readout-Guided Feature Alignment
	. Latent Warpage Function

	. Experiments
	. Implementation Details
	. Quantitative Evaluation
	. Qualitative Results
	. Ablation Study

	. Conclusion

